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ABSTRACT

We study a discrete model based on the observed behavior of excitable

media. This model has the basic properties of an excitable medium, that is,

a threshold phenomenon, a refractory period, and a globally stable rest point.

We are mainly interested in two dimensional periodic patterns. We characterize

the initial conditions which lead to such patterns, by introducing a basic in-

variant, the “winding number of a continuous cycle”.
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SIGNIFICANCE AND EXPLANATION

Pattern formation in living organisms is a basic problem in biology .

Recently chemists have been studying certain ( inorganic) chemical reactions

which lead to interesting temporal and spatial patterns , in an effort to

understand how such patterns arise. The interaction of diffusion and chemical

reaction effects seems important. In this paper a discrete mathematical model

is analyzed to see how these effects can lead to the sorts of behavior which

have been seen experimentally .

The responsibility for’ the wording and views expressed in this descriptive s~~~arylies with MRC, and not with the authors of this report.
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A COMBINATORIAL PROBLEM ARISING IN THE STUDY

OF REACTION-DIFFUSION EQUATIONS

J. Greenberg, C. Greene , and S. Hastings

The problem we shall consider bears a superficial resemblance to the well-

known “game” of Life , as devised by E. 3. Conway [1] , in which a set of simple

rules determines the step-by step evolution of certain patterns in an infinite

planar grid . Our problem is also set on an infinite grid of square “cell s”

and proceeds in discrete time steps . However it dif fers  from its predecessor

in having a natural physical interpretation , in terms of reaction-diffusion

processes. These are of current interest because of their importance in a

variety of biological phenomena, including nerve conduction and morphogenesis.

A related paper [2] continues the study of discrete models of such processes which

was begun in [3]. However, in our opinion, the combinatorial aspects of the

problem have sufficient interest to warrant separate treatment.

To describe our process we label cells c = ~~~ with integer coordinates

—~~~ < i , j  < , and consider an infinite sequence t = 0,1,2,3,... of

discrete time steps. To each triple (i,j,t) associate an integer U~~y

called the “state” of cell c. at time t. These integers will come from
1,3

a fixed finite set S = {0,1,2,...,N}, where N > 2. The initial states

• are chosen arbitrarily from S. Subsequent states ut ., t > 0, are
1,)  1,3

then determined inductively, according to rules A and B below.

The inductive procedure to be described requires choosing, initially, a

fixed integer K with

( 1) l < K < N / 2

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 .
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The states u = l,2,...,K are called “excited”, while states K + 1,...,N

are called “refractory”. Also, u = 0 is sometimes referred to as the ‘rest”

state. The rules for our game are

A) If 1 < u~ • < N - 1, then ut~~ = u~ • + 1, while if u~ = N then
— 1,3  — 1,3 1,] 1,3

t+1u . • O.
1,3

B) Suppose that u
t 

= 0. To determine ~~~~ examine the four “adjacent”
1,3 1,3

cells c
11~~~ ,, where Ii — i ’ I  + J i — j ’ j  = 1. If one or more of these

• • • t+1 • t+lcells is excited at time t, then u . • = 1. Otherwise, u . • = 0.
1,3 1,3

(FIG. 1)

The motivation for these rules is, roughly, that excitation “diffuses”

from an excited region into an adjacent resting region, but not into a

refractory region. Also, once a cell is excited , its state evolves according

to fixed dynamics with no diffusion effects from neighboring cells, until

it returns to rest. We remark that a number of previous authors, starting

with Wiener and Rosenblueth [4], have studied similar processes, usually on

a computer and again in a biological context. In [21 it is shown how these

rules are related to a certain singular limit of some widely studied continuous

models of reaction-diffusion processes.

The problem, broadly, is to describe how a given initial pattern

P
0 

= {( i
~ i~ u~~~~)1 

- < i , j  < ‘~} evolves as t increases. In particular,

what sorts of patterns can develop, and will the process continue indefinitely

without all cells returning eventually and permanently to rest. In (3] it is

observed that for N = 2 and K = 1 there is a complete solution, provided

only that the number of non—zero cells at t = 0 is finite . There are two

possibilities.

I. The pattern dies out. By this we mean that for any (i,j) there is a

T. • such tha t u t 
= 0 if t > T , • . Equivalently,

1,) 1,3 — 1,3

H -2-
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u r n  inf (
~~i~ + j}~u~ * o}

‘~~~

In other words, the pattern becomes identically zero in any finite region

in finite time .

II. The pattern persists. Thus there is at least one cell c~ such that
1,3 -

, 
-

{tlu~ • *o}1,3

is unbounded . Equivalently this is the case for each c1~~
. (This is

not hard to show.) Furthermore, the pattern is eventually periodic in

any finite region, and can be described as a set of rotating spirals and

concentric waves radiating periodically from fixed centers.

(FIG. 2)

In addition , one can easily determine which of I or II will occur , and

locate the centers of all rotating spirals and concentric rings, by examining

the initi~~l configuration. Since this paper is devoted to N > 2, and no

particular insight is gained by studying N = 2, we refer the reader to [3]

for a more thorough description of the three state model.

In considering the many state version we concentrate on determining

whether a pattern will persist or die out. We shall only consider patterns

with a finite number of non—zero States at t = 0. Ideally one would like to

find a necessary and sufficient condition for persistence which can be checked

at t = 0. We have not found such a condition, though we do have non—trivial

necessary conditions and sufficient conditions of this type. In addition, we

give a necessary and sufficient condition for persistence which can be checked

after a certain number T = T(P
0
) of iterations have been carried out, where

T depends , roughly , on the size of the initial non-zero set. (See Theorem 5.)

In order to state our results we need a measure of the distance between

states in S. We use the metric d( , ) defined by 

•.- • •____ ___ _ ____
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(2) d(m,n) = min fjrn — nj, N + 1 — ~m — n I }

for any m ,n in S. Equivalently, identify each k in S with the point

k
2711-. N+l

k = e

on the unit circle C in the complex plane. Then

N -f l
d(m ,n) = 

271 
{shorter distance from m to n on C)

Observe that for any cell ~~~~ and any t > 0,

t t+1
(3) d(u , ,u , • )  < 1

1,3 1,] —

Assume that N > 3 and let

( 4 )  L = min {K + 1, N + l
}

t t
Theorem 1. If there is a t > 0 such that d(u ° ,,

~~~~ .?  ., ) < L whenever0 U , J  1 ,3

~~~ c1,~~~, are adjacent, then the pattern dies out. (Recall that

c . • and c ,, ., are adjacent if ~i - i’
~ ~

- j — i’I = 1.)1,3  1 ,J

In particular , if the process is persistent , then ther e must be adjacent

cells c . • and c. • ,  such that d(u? .,u
0
, • , ) > L. In fact, this can

1,3 1 ‘3 1,3 1 ‘3 —

be strengthened a bit.

Theorem 2. If the process persists, then there is a fixed pair of adjacent

cells c. • and c., • such that
1,3 1 ,)

t td( u .  • ,u , ,  • , ) > L
1,3  1 ‘3  

—

for all t > 0 .

If L < 
N_~ —~ , then eventually an even stronger discontinuity must

.~~~~~~~~~~~ develop.

Theorem 3. If the process persists, then for any s uf f i ci ent1y 1~ t there

is a pair of adjacent cells c , • and c ., • ,  such tha t d (u~ ,,u~ > N + 1
— 1, ]  — 1 ‘3  1,)  i ’ ,3 ’ — 4

_ _ _  _ _ _ _ _ _ _ _ _ __ _ _ _
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t An estimate will be given for when (at what t) this inequality must

hold.

In order to give sufficient conditions for persistence we introduce the

concept of a cycle.

• 
. 1 2 3 M M+lDef. A cycle is an ordered (M + l)—tuple C Cc ,c ,c ,...,c ,c ) of

cells such that ~~~~~~~~~ are distinct, ~
M+1 

= ci’, and c~ is adjacent

i+l
to c for i < 1 < M .

(FIG. 3)

Def. A cycle C is said to be continuous at time t if

d(u ~ ,u~~ 1
) < K for 1 < i < M

where u~ is the state of cell c
1 

at time t.
1

For such a cycle we then define a “winding number” at time t. For this

purpose recall the previous identification of the states k = 0,1,2,..
• k

• ~-, ‘j-~~2w1 -

with the points k = e on the unit circle. If m,n E 5, let mn

denote the shorter directed arc from rn to’ a. If both arcs from in to n

are of the same length, let ma be the arc connecting rn to ii in the

counter—clockwise direction. Then, for an ordered pair (m,n) of integers

in S, let

(d(m ,n) if mn connects m to n in the counter-clockwise direction
a(m,n) =

L,,, -d (m ,n) otherwise

The winding number of a continuous cycle C at time t is then defined by

M
W

~~~~
(C) N + ~. 

Z a(u ~ ,u~~ 1
)

1=1

It is not hard to show that W
~~~~
(C) is an integer , and represents the

net number of times the unit circle is traversed in the counter—clockwise direc—

tion by the points U
j 

as i runs from 1 to M + 1. We now give a necessary

and suff icient condition for persistence .

-L 
_  ___ _ _  - - -- - - -  
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Theorem 4. The pattern is persistent if and only if there is a T > 0 and

a continuous cycle C at time T such that W
T
(C) * 0.

Obviously this includes a sufficient condition for persistence which

can be checked at t = 0.

It is desirable to find an upper bound for the smallest T satisfying

the conditions in Theorem 4. I.~ can be shown by example that T may be

arbitrarily large if the size of the initial non—zero set is not restricted.

Our result in this direction is probably not the best possible.

Theorem 5. Let R
1 ~e a “diamond” shaped set of the form

R
1 

= {c. •Hi I + Iii < m  + l}

for some m , and suppose that

~~~ = 0 if Ii i  + lii >

Then the pattern persists if and only if there is a continuous cycle with non—

zero wind ing number at time T = N(R
1
) K, where nCR 1

) is the number of

cells in R
1
.

Our final result is proved in almost the same way as Theorem 5.

Theorem 6. The process is eventually periodic in any bounded region.

In other words , there is a p such that for each m there is a T
m 

with

t+p t
U ,  • = U .
1,3 1,3

whenever t TM and Ii~ + < i n.

One can extend these results in several directions. For instance, arrays

of cells in more than two dimensions, or with non—rectangular geometry could

be considered . Other definitions of “adjacent”, or “neighboring” cells might

be used . For example in the plane with square cells we could say that c. ,

and c , . ,  are neiqhbors if 1 < Ii — i’~ + Ii — i’! < 2, ln any of these cases

—6— ;
- 

-
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Theorem 4 goes over without change. However Theorem 1 may need modification.

The alternative definition of adjacent cells given above requires the number

N + l  • N + linstead of in Theorem 1. On the other hand , with rectangular

geometry and the definition of two cells as adjacent if they have common faces,

Theorems 1-6 are essentially unchanged in higher dimensions.

— Proofs : A basic observation is that discontinujties in a cycle do not appear

spontaneously. This is implied by the following result.

Lemma 1. Suppose that c and d are adjacent cells with states ut and

at time t. If

t
(5) d(u °,v 0) < K

for some t
0 

> 0, then

t t to tod(u ,v ) < max{d (u ,v ) ,  l}

• for all t > t ~.

Corollary. If a cycle is continuous at t0, then it is continuous for all

t~~~t.0 
t t

Proof of Lemma 1. If u 0 * o and v 0 * 0, then rule B, together with

(2 ) , implies that

t
0
+l t

0
+l t

0 
t0(6) d(u ,v ) = d(u ,v

We can therefore assume that at least one cell, say c, is in the resting
t

o t
ostate at t = t

0
, i.e. that u = 0. If, in addition, v = 0 then rule B
t+l t+l

implies that d(u 0 ,v 0 <

t t
Next suppose that u 0 — 0 , 1 < V 

0 
< ~~ Again use rule B, to conclude

t + l  t
that u = 1 and again (6) holds. Finally, if K + 1 < V ‘C N then

t
( 1), (2 ) , and (5) imply that v > N — K + 1 > N/2. But from this it follows

that

— 7—
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t+l t t t
0 0 0 0d(v ,u )=d(v ,u ) - 1 .

t +J• t+l t
0 

toFrom (3) and the triangle inequality we get d(u 0 0 
< d(u ,v 

~~ ,

completing the proof of Lemma 1.

It turns out that Theorem 4 is the key result so we prove it first.

Proof of Theorem 4. We begin by showing that if C is a continuous cycle at

to, and hence for t > t
0
, then W

~~~
(C) = W~ (C) for t > t

0
. It suffices

to show that W
~~+i

(C) = W
~~~~

(C) .

For each pair of integers j  and k with 1 < j  < k < M , let

k-l 
-

• r t t
~i=j

In particular, W
~
(C) = 

N 1 Qt
(1,M + 1) .

Lemma 2. Suppose that j  and k are integer s with 1 < j  < k < M + 1 and that

(7)  u~ ~ 0, * 0, and u~ = 0 if j < i < k .

~ ~~~~~~ 
= 

~~~~~~~~~~~~~~~

Proof. If k = j + 1, then

Qt
(j,k) = a(u~ ,u~) O ( U ~~~

1
,u~~~

’) =

because both uS and uj~ move one step counter-clockwise around the unit

circle as s goes from t to t + 1.

Now suppose that k > j + 2. From (7) we see that

t+l •u . = 0  or 1 if j < i < k .
1

t+l t+1 t+1 t+l • . •Hence c(u. ,u. ) = u . — u. if ~ 
< i < k — 1 and so

1 i+1 i+l 1

C(U 1
,U~~~~) + I ~~~~~~~ — u~~

1) + a(u~
’
~~,u~

’
~
’)

-8-
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where the summation term on the right is not present if k = j + 2. If

k > j + 2 then the summation term collapses. We conclude that for any

• k > j + 2 ,

• t+1 t+1 t+1 t+1 t+l t+l(8) Qt+1(31
k) = C(u . ,u.~ 1

) + Uk i  
- u .~ 1 

+

From (7)  it follows that ~~~~ and u~
’
~
’1 lie in the set

(N — K + 2,N) U (O,K + 1]

Since u~~~ and ut~~ are 0 or 1, it is easily seen that

t+l t+l t+l t+la(u. ,u .÷1
) — u.÷] eCu . ,0)

t+l t+l t+l t+lo(u
k l ,uk ) + u)~_1 = a(O,uk

and from (8) ,

Qt+1(j,k) = c(u~
’
~~,O) + a(0,u~~

1)

= C(u~ ,O) + c(0,u~)

• = 

~~~~~~~~~~~ 
,

where we again use (7). This proves Lemma 2.

The first part of Theorem 4 then follows quickly by letting
toi

1 
< i

2 
< < i be those i such that u . * 0, and observing that

W
t
(C) = 

~~~~~~~~~~~~~~~~ ~

where we set i
1 

= i
1
. The desired result follows by applying Lemma 2 to

j = i
~~~

k = i
+1 

for 1 < m < p .

Remark. An alternative proof that the winding number of a continuous cycle

is constant proceeds as in the following sketch: The states of the cells

of C at time t can be used to define a continuous map F
t 

: C -
~ C of the

unit circle into itself. To do this, identify the cells ~
l,...,0M of C

—9—

~ 

— —~~~~~~~~--~~~
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~~~~~

A 
~
‘
~
-j-• 2~ i

with the points c3 
= e on C. Map C

3 into u~. Extend this map

to a continuous one from C to C by interpolation, using shortest arcs

along C and taking the counter-clockwise arc in case of ties. This defines

Ft. and similarly one can define F
~+i

t using the states at time t + 1.

These two maps are easily seen to be homotopic, and hence have the same

Winding number .

We next consider the second part of Theorem 4, namely, that if a pattern

persists, then eventually there must be a continuous cycle with non-zero

winding number . To prove this some additional concepts are helpful.

Definition. A is an 14-tuple p ~~~~~~~~~ of cells such that c
1 is

adjacent to ~~~~ for 1 < i < M  - 1.

• Def. A path P is said to be continuous at time t if d (u~ ,u~ ) < K

for 1 < i < M — 1, where u~ is the state of c1 at time 

—

By Lemma 1, if P is continuous at t
0
, then it is continuous for all

t t
0
.

We shall say that a cell c is external to the pattern at time t if

there is a rectangle R in the plane such that c is outside R but all

cells which have non-zero states at time t lie inside R.

Under the assumption that there are no continuous cycles with non—zero

winding number for any t > 0, we can define the potential of a cell ~~~~

at time t for any cell which is connected to an external cell by some

continuous path at time t. Let the path be c
l
,....c

M
, where ~

M 
=

and C’ j5 external. Then we set

h~~ (i.j) = ~~ a(u~ ,u~~1
) .

This will be the same for any continuous path connecting c)~ to any external

cell , for otherwise we could find a continuous cycle with non-zero winding

-10- 
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number . All cells external to the initial pattern have a potential for all t.

Also, if h
t 

(i , j )  is defined, then so is h (i ,j) for t > t
0
, and

• 0 t

h
~~
(t,j) > h~ (i ,j), t > to. Among those cells which are not external to the

initial pattern (a f in i te  number), we can allow the possibility that some may

never have a potential defined. In any case there must be a t
0 

> 0 such

that no cells have a potential defined for the first time at some t > t0
.

Let c
1,3 

be any cell with a potential defined for t > t0
. Suppose

that for some t > t , u~ • = 0 and 1 < u~ , < K for an adjacent cell— 0 1,3 — 1’,)’ —

c,, • , .  Then c ,, • ,  has a defined potential at time t which must be
1 ‘3 1 ‘3

higher than that of c. •, since we can connect c., •, to the outside byi ,J 1 ‘3
a path going through c

1~~
.

Let A’ be the highest potential of any cell at time t0
. Let A be

the next higher multiple of N + 1. We claim that no cell can achieve a

potential greater than A . If not, let ck 
be the first cell to achieve a

t _.’l
potential of A + 1, and suppose this occurs at t = t

1
. Then u

k~~ 
= 0,

and C
k i  has a neighbor which is excited at time t

1 
— 1, so that

t
l
—l

“ ~~~~~~ ~ K. But then ck,~~~
, must have a potential greater than A at

t = t
1 

— 1, which is a contradiction .

But this proves that among all those cells with potential A’ at time

to, none can ever become excited again, contradicting the persistence of

the pattern.

Proofs of Theorems 1, 2, and 3. Theorems 1, 2, and 3 all follow from Theorem 4.

Notice that as a consequence of Lemma 1, Theorems 1 and 2 are corollaries of

• Theorem 3. To prove Theorem 3, assume that i = K + ~ 
N + 1 and choose

to large enough to insure that at t
0 

there is a continuous cycle

C = (c
]
,...,c

M) with W~ (C) * 0. This is possible by Theorem 4. We shall
0

show tha t

I ~~~~~~~~~~~~~ 
-  

—11—
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N + 1
1,) 1 ,j — 4

for some pair of adjacent cells c. . and c,, •, .
1,3  1 ,3

For this purpose we use a different kind of continuity for a cycle. We

say that a cycle E = (e~ ,. ..,e~) is mildly continuous at t
0 

if

d (u.,~~.~ 1
) < 

N + 1

for 1 < i < Q, where u. is the state of e’ at to. (We shall only be

concerned with states at t = t
0
, and so we suppress the time in this

notation.)

For any mildly continuous cycle E, the winding number W~ CE) is defined
0

just as before. We are assuming that W~ (E) * 0.

Let r = 
~~~~~~~~~~~~~~~~~~~~~ is adjacent to c

~ t~~~i
} and suppose 

-

that r < 
N + 1

Lemma 4. There is a mildly continuous cycle E at to which consists of

exactly four cells and has non—zero winding number.

Proof. Consider C as an ordered M—tuple of closed squares in the plane.

Let y be the Jordan curve obtained by joining the centers of consecutive

squares of C. Suppose that the inside of y contains squares which are not

in C. Such cells we call interior to C. Then there must be three consecu-

tive cells ci,c
i4
~~,c

i42 
in C which form three quarters of a square of

four cells such that the fourth cell c~ in this square lies inside y.

(FIG. 4)

• N + l  • • i+lSince r ‘C , the cycle obtained by replacing c in C by c~ is

still mildly continuous. Furthermore,

a(u.,u .~ 2
) = o (u,,u

1 1
) + a(u.÷1,u.~ 2) . 

-

— o(u~ .u*) + o(u*,ui +2
)

-12-
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where u~ is the state of c* at t
0
. Therefore the new cycle C~~ has the

same (non-zero) winding number as C. However, c* has one less interior

cell than C.

Continuing this shrinking process, we see that there must be a mildly

continuous cycle C
1 

at t
0 

with non-zero winding number and no interior

cells. Again there must be consecutive cells c
i
,c
lfl ,c~+2 of C

1 which

comprise three quarters of a square of cells, and now these can be chosen so

that the fourth cell c in this square is also a cell of C . We can renumber

the cycle so that & = c3 for some j > i + 2.

If j = i + 3, then there are two cases. 
- The cycle = ci,c~~~ ,c~~

2
,c~

43

may have non-zero winding number, in which case we are done. If, on the other

hand , Ô has winding number 0, then omit ~~~~ and c~~
2 

in C
1 and

there results a cycle C
2 

with W
t
(C2) = W

~~
(C’). Thus C

1 has been reduced

to a still smaller cycle.

Next suppose that j > i + 3. Proceed according to whether the cycle
i+2 i+3 j

D = Cc ,c ,. - .,c ) has non—zero winding number or not. If W (D) * 0,
• .1 • • .  1+2 3replace C with C. If W (D) = 0, eliminate c ,...,c from

“O
It is thus clear that we arrive eventually at a cycle with the desired

properties at t0 , proving Lemma 4.

But from this result we obtain a contradiction . Since

N + ld(u.,u . ) < r <
i i+l — 4

and assuming as we may that u1 
— 0, we have the inequalities

1 < U
2 

< r, u3 
< 2r, u4 

< 3r

On the other hand, u4 
> N - r + 1. This gives

3 r > N - r + l , or r > N l

which contradiction proves Theorems 1, 2, and 3 .

~~~ - - _ _
~~ : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proof of Theorems 5 and 6. Let R0 be the diamond shaped region

R
0 

{c
~~~ 

I i i  + I i i  ~~m}

where in is chosen so large tat R
0 

contains the entire non—zero set at

t = 0. Also, let

I R = {c. • ~ ij  + Iii < in + n}
n 1 ,3 —

for n = 1,2,3 

Lemma 5. Within any given R , i-i > 1, the process proceeds independently
n

from the outside of R . More precisely, if c. • e R’~ and u.°. 1, then
t 1,3 — 1,3

2 < u.? ., < 1< + 1 for some cell c . , - ‘  adjacent to c. . and also contained ‘ 
-

— 1 ‘3 — 1 .3  1,]

in R
— 

This result implies that if is a second process , obeying the rules

A and B if c . - € R
n 

but following the rule u~ • 0 if c. • ~~

1,3 1,3 1,3

then • = . in R
5
. The process • is clearly eventually periodic,

1, ]  1, )  1 ,J

which leads to our theorem.

Proof of Lemma 5. Suppose, then, that the Lemma is false, and let t
0 

be the

first time where a cell in some P , n > 1, is excited by a cell outside R
n — fl

and not simultaneously excited by a cell in R . Thus there is a cell c. • = C
n 1 ,3

in R with U .°. = u 
0 

= 1, while 2 < u 0 < K + i. for some adjacent cell
fl 1 ,3  0 — 1 —

n+1
c’ in R . Furthermore ,

t
(8) U

2

0 
~ [2,K + 1]

for any cell c in

0 

R5 which is adjacent to c0. 
to

However u0 
- u

1 
= 0, so Lemma I implies that u

1 
= 2. Also , c must

• . 3 n •in turn have been excited by a cell c e R . This follows from our hypotheses

on to, since cells of R~
’
~~ wh ich are not in R’~ cannot be adjacent to each

other. Then u3
° 3. Also , c°, c~

’ and c3 form three cells out of a



-~ 
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square of four cells. Let c2 be the fourth cell in this square. Then
t t

E R~ and c2 is adjacent to c° and c3. Since u
3
° = 3, u

0
° = 1, and

t to t t t
< 1, d(u

3
0
,u
2
0
) < 1, it is seen that u

2
° = 2, a contradiction

of (8). This proves the Lemma.

Theorem 6 is immediate since the process ,, which is on a finite
1,3

grid , is clearly periodic. Theorem 5 also follows easily , since ~~~~ can

t 

only be persistent if there is a cycle ~~~~~~~~~~~ of cells in R
M+l 

such

that 1 < u~ 
< K , and each c1 excites cell c~~

1 
within a time K from

when c
1 

was excited by c~~
1
, for 2 < i < N. The existence of such a

cycle follows easily for a finite grid .
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